On the m-Hull Number of the Join and Composition of Graphs

Article in Ars Combinatoria - Waterloo then Winnipeg - July 2012
Impact Factor: 0.26

1 author:

Esamel Paluga
Caraga State University

7 PUBLICATIONS 6 CITATIONS

SEE PROFILE
On the m-Hull Number of the Join and Composition of Graphs

Esamel M. Paluga
Department of Mathematics
Caraga State University
Butuan City, Philippines
e-mail: empaluga@yahoo.com

ABSTRACT

In this paper, the m-hull sets in the join and composition of two connected graphs are characterized and their m-hull numbers are shown to be direct consequences of these characterizations.

1 Introduction

Given a connected graph $G = (V(G), E(G))$ and vertices u and v of G, we call any u-v path of length $d_G(u, v)$ (length of the shortest path connecting u and v) as u-v geodesic. Any path that does not contain an edge joining two non-consecutive vertices u and v is called a u-v monophonic path (or simply, m-path).

The monophonic closure of a subset S of $V(G)$ is $J_G[S] = \bigcup_{u,v \in S} J_G[u,v]$, where $J_G[u,v]$ is the set containing u and v and all vertices lying on some u-v m-path.

A subset C of $V(G)$ is said to be m-convex if, for every pair of vertices $x, y \in C$, the vertex set of every x-y m-path is contained in C. It is easy to verify that S is m-convex if and only if $J_G[S] = S$.

The m-convex hull $[S]_m$ of a subset S of $V(G)$ is the smallest m-convex set in G containing S. It can be formed from the sequence $\{J_G^p[S]\}$, where p is a nonnegative integer, $J_G^0[S] = S$, $J_G^1[S] = J_G[S]$, and $J_G^p[S] = J_G[J_G^{p-1}[S]]$ for $p \geq 2$. For some p, we must have $J_G^p[S] = J_G^q[S]$ for all $q \geq p$. Further, if p is the smallest nonnegative integer such that $J_G^p[S] = J_G^q[S]$ for all $q \geq p$, then $J_G^p[S] = [S]_m$. If $[S]_m = V(G)$, then we call S an m-hull set (monophonic hull set). The m-hull number of G, denoted by $mh(G)$, is the minimum cardinality of an m-hull set in G. Any m-hull set S with $|S| = mh(G)$ is called a minimum m-hull set in G.
The next remark that follows is from the definition of the m-convex hull of a set.

Remark 1.1 Let G be a connected graph and $S \subseteq V(G)$. Then $[S]_m = S$ if and only if S is an m-convex set in G.

Lemma 1.2 Let G be a connected graph. Then $mh(G) = |V(G)|$ if and only if G is a complete graph.

Proof. Let G be a connected graph and suppose that $mh(G) = |V(G)|$. Suppose further that G is not complete. Then there exist $a, b \in V(G)$ such that $d_G(a, b) \neq 1$. Let $c \in J_G[a, b] \setminus \{a, b\}$ and consider $S = V(G) \setminus \{c\}$. Then S is not m-convex in G; hence $J_G[S] \neq S$. Thus, $S \subset J_G[S]$. It follows that $J_G[S] = V(G)$. This implies that $V(G) = J_G[S] \subseteq [S]_m$. Therefore, $[S]_m = V(G)$; that is, S is an m-hull set in G. Hence, $mh(G) \leq |S| = |V(G)| - 1$, contrary to our assumption. Therefore, G must be a complete graph.

For the converse, suppose that G is a complete graph. Then every subset C of $V(G)$ is m-convex in G; hence, $[C]_m = C$ by Remark 1.1. Thus, $[C]_m = V(G)$ if and only if $C = V(G)$. This implies that $C = V(G)$ is the only m-hull set in G. Thus, $mh(G) = |V(G)|$. ■

2 Join of Two Graphs

Our first goal is to characterize m-hull sets in $G + K_n$, where G is a connected graph and K_n the complete graph of order n.

Lemma 2.1 Let G be a connected non-complete graph, $S \subseteq V(G + K_n)$ and $S_1 = S \cap V(G)$. For every $p \geq 0$, if $y \in J_{G+K_n}^p[S \cap V(G)]$, then $y \in J_G^p[S_1]$.

Proof. The conclusion clearly holds for $p = 0$. Let $y \in J_{G+K_n}^p[S \cap V(G)]$. If $y \in S_1$, then $y \in J_G^p[S_1]$. Suppose $y \notin S_1$. Then there exist $s, t \in S$ such that $y \in J_{G+K_n}^p[s, t]$. Since $y \neq s$ and $y \neq t$, it follows that $d_{G+K_n}(s, t) = 2$. This means that $s, t \in S_1$. Since every $s-t$ m-path in $G + K_n$ containing y is an $s-t$ m-path in G, it follows that $y \in J_G^p[s, t]$. Thus, $y \in J_G^p[S_1]$. This shows that the assertion of the Lemma holds for $p = 1$.

Next, suppose that the assertion holds for $p \geq 1$. Assume that $y \in J_{G+K_n}^{p+1}[S \cap V(G)]$. If $y \in J_{G+K_n}^p[S]$, then $y \in J_G^p[S_1]$ by assumption. So suppose that $y \notin J_{G+K_n}^p[S]$. Then there exist $u, v \in J_{G+K_n}^p[S]$ such that $y \in J_{G+K_n}^p[u, v]$. Since $y \neq u$ and $y \neq v$, it follows that $d_{G+K_n}(u, v) = 2$. Hence, $u, v \in V(G)$. By the assumption, $u, v \in J_G^p[S_1]$. This implies that $y \in J_G^{p+1}[S_1]$. Therefore, the assertion also holds for $p + 1$. This completes the proof of the lemma. ■

Theorem 2.2 Let G be a connected non-complete graph. A subset $S \subseteq V(G + K_n)$ is an m-hull set in $G + K_n$ if and only if $S \cap V(G)$ is an m-hull set in G. 2
Proof. Let G be a connected non-complete graph. Suppose $S \subseteq V(G + K_n)$ is an m-hull set in $G + K_n$, say $[S]_m = J_{G + K_n}^p[S] = V(G + K_n)$, where p is the smallest non-negative integer satisfying the first equality. Let $S_1 = S \cap V(G)$ and let $x \in V(G) \setminus J_{G}^{p-1}[S]_1$. Since S is an m-hull set in $G + K_n$, there exist $a, b \in J_{G + K_n}^p[S]$ such that $x \in J_{G + K_n}[a, b]$. By the contrapositive of Lemma 2.1, $x \notin J_{G + K_n}^p[S]$; hence, $x \neq a$ and $x \neq b$. This implies that $d_{G + K_n}(a, b) = 2$, that is, $a, b \in V(G)$. Thus, $a, b \notin J_{G}^{p-1}[S]_1$ by Lemma 2.1. Therefore, $x \notin J_{G}^{p-1}[S]_1$. This shows that $V(G) \setminus J_{G}^{p-1}[S]_1 \subseteq J_{G}^p[S]_1$. Since $J_{G}^{p-1}[S]_1 \subseteq J_{G}^p[S]_1$, it follows that $V(G) \subseteq J_{G}^p[S]_1$. Therefore, S_1 is an m-hull set in $G + K_n$.

For the converse, suppose that S_1 is an m-hull set in G, say $J_{G}^p[S_1] = V(G)$, where p is the smallest nonnegative integer satisfying the equality. Since $J_{G}^p[S_1] \subseteq J_{G + K_n}^p[S_1]$, it follows that $V(G) \subseteq J_{G + K_n}^p[S_1]$. If (S_1) were a complete subgraph of G, then $J_{G}^p[S_1] = S_1$ for all nonnegative integer r. Thus, $J_{G}^p[S_1] = S_1 \neq V(G)$ contrary to our assumption. Therefore, (S_1) is non-complete. Choose $u, v \in S_1$ such that $d_G(u, v) \neq 1$. Then $d_{G + K_n}(u, v) = 2$ and $[u, w, v]$ is a $u-v$ m-path for every $w \in V(K_n)$. It follows that $V(K_n) \subseteq J_{G + K_n}[u, v] \subseteq J_{G + K_n}^p[S_1]$. Therefore, $V(G + K_n) \subseteq J_{G + K_n}^p[S_1]$, that is, S_1 is an m-hull set in $G + K_n$. Since $S_1 \subseteq S$, S is also a m-hull set in G. This completes the proof of the theorem.

Corollary 2.3 Let G be a connected non-complete graph. A subset $S \subseteq V(G + K_n)$ is a minimum m-hull set in $G + K_n$ if and only if $S \subseteq V(G)$ and S is a minimum m-hull set.

Proof. Let G be a connected non-complete graph. Suppose $S \subseteq V(G + K_n)$ is a minimum m-hull set in $G + K_n$. Then $S_1 = S \cap V(G)$ is an m-hull set in G by Theorem 2.2. Suppose that $S^* = S \cap V(K_n) \neq \emptyset$. Then $S_1 = S \setminus S^*$ is an m-hull set in $G + K_n$ by Theorem 2.2 and $|S_1| < |S|$. This contradicts the fact that S is a minimum m-hull set in $G + K_n$. Therefore, $S \subseteq V(G)$. Again, by Theorem 2.2, S is a minimum m-hull set in G, that is, $mh(G) = |S|$.

The converse can be proved in a similar manner.

The following result gives the m-hull number of $G + K_n$ which is a direct consequence of the above Corollary and Lemma 1.2

Corollary 2.4 Let G be a connected graph of order p and K_n the complete graph of order n. Then

$$mh(G + K_n) = \begin{cases} p + n & \text{if } G = K_p, \\ mh(G) & \text{if } G \neq K_p. \end{cases}$$
Example 2.5 Let \(n \) and \(m \) be positive integers. Then

1. \(mh(K_n + K_m) = n + m \) for all \(n \geq 2 \);
2. \(mh(C_n + K_m) = 2 \) for all \(n \geq 4 \);
3. \(mh(W_n + K_m) = 2 \) for all \(n \geq 4 \).

The next result characterizes \(m \)-hull sets in the join of any non-complete graphs.

Theorem 2.6 Let \(G \) and \(H \) be non-complete graphs. A subset \(S \) of \(V(G + H) \) is an \(m \)-hull set in \(G + H \) if and only if there exist \(a, b \in S \) with \(d_{G+H}(a, b) = 2 \). In this case, either \(a, b \in V(G) \) or \(a, b \in V(H) \).

Proof. Let \(G \) and \(H \) be non-complete graphs and \(S \subseteq V(G + H) \) an \(m \)-hull set in \(G + H \). If \(S = V(G + H) \), then we are done. So suppose \(S \neq V(G + H) \). Since \(S \) is an \(m \)-hull set in \(G + H \), it follows that \(S \neq J_{G+H}[S] \) (otherwise, \(J_{G+H}^p[S] = S \neq V(G + H) \) for all \(p \geq 1 \), contrary to our assumption). Let \(x \in J_{G+H}[S] \setminus S \). Then there exist \(a, b \in S \) such that \(x \in J_{G+H}[a, b] \). Since \(x \neq a \) and \(x \neq b \), \(d_{G+H}(a, b) = 2 \). In this case, \(a, b \in V(G) \) or \(a, b \in V(H) \).

Conversely, suppose that there exist \(a, b \in S \) with \(d_{G+H}(a, b) = 2 \). Assume that \(a, b \in V(G) \). Then \(V(H) \subseteq J_{G+H}[a, b] \subseteq J_{G+H}[S] \). Pick \(u, v \in V(H) = J_{G+H}[S] \) such that \(uv \notin E(H) \). Then \(d_{G+H}(u, v) = 2 \); hence \(V(G) \subseteq J_{G+H}^2[S] \). Since \(J_{G+H}[S] \subseteq J_{G+H}^2[S] \), \(V(G + H) \subseteq J_{G+H}^2[S] \). This shows that \(S \) is a \(m \)-hull set in \(G + H \).

As a quick consequence of Theorem 2.6, we have

Corollary 2.7 Let \(G \) and \(H \) be non-complete graphs. Then \(mh(G + H) = 2 \).

3 Compositon of Two Graphs

The concept that follows appeared and was illustrated in [5].

Definition 3.1 Let \(G \) be a connected graph and \(A \subseteq V(G) \). A point \(a \in A \) is called a monophonic interior point of \(A \) if \(a \in J_G[A \setminus \{a\}] \). The set of all monophonic interior points of \(A \) is denoted by \(A^o \).

Lemma 3.2 [5]. Let \(G \) be a connected graph and \(K_n \) be the complete graph of order \(n \). If \(P = [(u_1, v_1), (u_2, v_2), \ldots, (u_r, v_r)] \), \(r \geq 2 \) is an \(m \)-path in \(G[K_n] \), then we have the following possibilities:

i. If \(u_i's \) are distinct, then \([u_1, u_2, \ldots, u_r] \) is an \(m \)-path in \(G \).

ii. If \(u_i's \) are not distinct, then \(r = 2 \).
Lemma 3.3 Let G be a connected graph and K_n the complete graph of order n, and $C \subseteq V(G[K_n])$. Then $(J_{G[K_n]}^k[C])_G = J_G^k[C_G]$.

Proof. We prove this by induction on k.

Let $a \in (J_{G[K_n]}[C])_G$. Then there exists $b \in V(K_n)$ such that $(a, b) \in (J_{G[K_n]}[C])_G$. Thus, we can find an m-path $[(u_1, v_1), \ldots, (u_s, v_s)]$ in $G[K_n]$ such that $(u_1, v_1), (u_s, v_s) \in C$ and $(a, b) = (u_r, v_r)$ for some $r, 1 \leq r \leq s$. If $s = 2$, then clearly, $[u_1, u_2]$ is an m-path in G. Thus $a \in C_G$. Suppose $s \geq 3$, then by Lemma 3.2, $[u_1, \ldots, u_s]$ is an m-path in G containing a. Thus, in either case, $a \in J_G[C_G]$.

Conversely, let $a \in J_G[C_G]$. Then there exists an m-path $[u_1, \ldots, u_s] \in G$ such that $u_1, u_s \in C$ and $a = u_r$, for some $r, 1 \leq r \leq s$. Let $v, v' \in V(K_n)$ such that $(u_1, v), (u_s, v') \in C$. If $v = v'$, then $[(u_1, v), \ldots, (u_s, v')$ is an m-path in $G[K_n]$ containing (a, v). If $v \neq v'$, then $[(u_1, v), \ldots, (u_s, v'), (u_s, v')]$ is an m-path in $G[K_n]$ containing (a, v). Thus, $(a, v) \in (J_{G[K_n]}[C])_G$. Consequently, $a \in (J_{G[K_n]}[C])_G$.

This shows that the assertion holds for $k = 1$. Next, suppose the assertion holds for $k = n > 1$. Now $(J_{G[K_n]}^{n+1}[C])_G = J_G^{n+1}[C_G]$. By induction hypothesis, $J(J_{G[K_n]}^{n+1}[C])_G = J_G^{n+1}[C_G]$. Thus $(J_{G[K_n]}^{n+1}[C])_G = J_G^{n+1}[C_G]$. Therefore, the assertion holds for all integer $k \geq 1$.

Theorem 3.4 [5]. Let G be a connected graph and K_n the complete graph of order n. Then $C = \bigcup_{a \in S} \{(a) \times T_a\}$, where $S \subseteq V(G)$ and $T_a \subseteq V(K_n)$, is monophonic in $G[K_n]$ if and only if S is monophonic in G and $T_a = V(K_n)$ whenever $a \in S \setminus S^o$.

The next result describes completely the m-hull sets in $G[K_n]$.

Theorem 3.5 Let G be a connected graph, K_n the complete graph of order n, and $C \subseteq V(G[K_n])$. Then $C = \bigcup_{a \in S} \{(a) \times T_a\}$ is an m-hull set in $G[K_n]$ if and only if S is an m-hull set in G if $T_a = V(K_n)$ whenever $a \in S \setminus (V(G))^{o}$, where $(V(G))^o$ is the set of all monophonic interior points of G.

Thus, $J_G^0[S] = J_G^{l-1}[S] = V(G)$, i.e., S is an m-hull set in G.

Next, $J_G^{l-1}[C]$ monophonic in $G[K_n]$ implies $(J_{G[K_n]}^{l-1}[C])_G$ is monophonic in G and $T_a = V(K_n)$ whenever $a \in (J_{G[K_n]}^{l-1}[C])_G \setminus (J_{G[K_n]}^{l-1}[C])_G^o$ by Theorem 3.4. This implies that $J_G^{l-1}[S]$ is monophonic in G and $T_a = V(K_n)$ whenever $a \in J_G^{l-1}[S] \setminus (J_G^{l-1}[S])^o$. Consequently, $J_G^l[S] = V(G)$ and $T_a = V(K_n)$.
whenever $a \in J^{l-1}_G[S] \setminus (J^l_G[S])^\circ$. Note that $S \subseteq J^{l-1}_G[S]$ and $(J^l_G[S])^\circ \subseteq V(G)^\circ$. It follows that $J^l_G[S] = V(G)$ and $T_a = V(K_n)$ whenever $a \in S \setminus V(G)^\circ$.

For the converse, suppose S is an m-hull set in G and $T_a = V(K_n)$ whenever $a \in S \setminus V(G)^\circ$. Then $V(G) = J^l_G[S] = (J^l_G[K_n]|C)_G$. Let $(a, b) \in V(G[K_n])$. If $a \in S \setminus V(G)^\circ$, then $(a, b) \in C \subseteq J^l_G[K_n]|C]$. Suppose $a \in (V(G))^\circ$. Then there exist $u, u' \in V(G) \setminus \{a\}$ such that $a \in J_G[u, u']$. Let $[u_1, \ldots, u_r]$ be an m-path in G such that $u_1 = u, u_r = a$, and $u_s = u'$. Let $v, v' \in V(K_n)$ such that $(u, v), (u'v') \in J^l_G[K_n]|C]$. Consider the following cases:

Case 1 $v = v' = b$. Then $[(u_1, v), \ldots, (u_r, v), (u_s, v)]$ is an m-path in $G[K_n]$ containing (a, b).

Case 2 $v \neq b$ and $v' = b$. Then $[(u_1, v), \ldots, (u_r, v), (u_r, b), \ldots, (u_s, b)]$ is an m-path in $G[K_n]$ containing (a, b).

Case 3 $v = b$ and $v' \neq b$. This case is similar to Case 2.

Case 4 $v \neq b$ and $v' \neq b$. Then $[(u_1, v), \ldots, (u_r, v), (u_r, b), \ldots, (u_s, b), (u_s, v')]$ is an m-path in $G[K_n]$ containing (a, b).

Thus $(a, b) \in J^l_G[K_n]|C$.

Therefore $V(G[K_n]) = J^{l+1}_G[K_n]|C]$. Accordingly, C is an m-hull set in $G[K_n]$.

The next result gives formula for computing the m-hull number of $G[K_n]$.

Corollary 3.6 Let G be a connected graph, K_n the complete graph of order n, and $(V(G))^\circ$ be the set of all monophonic interior points of $V(G)$. Then

$$mh(G[K_n]) = \min\{n|S \setminus (V(G))^\circ| + |S \cap (V(G))^\circ| : S \text{ is an } m\text{-hull set in } G\}.$$

We now give the m-hull number of the composition $G[H]$, where G and H are non-complete graphs.

Theorem 3.7 Let G and H be non-complete graphs. Then $mh(G[H]) = 2$.

Proof. Let $a \in V(G)$ and $b, b' \in V(H)$ such that $d_H(b, b') = 2$. We show that $S = \{(a, b), (a, b')\}$ is an m-hull set in $G[H]$. Let $(u, v) \in V(G[H])$ such that $u \neq a$ and $[u_1, u_2, \ldots, u_r]$ be an a-u geodesic, where $u_1 = a$ and $u_r = u$.

Claim: For each $(u, v) \in V(G[H])$, there exists $l(u)$ such that $(u, v) \in J^l[S]$.

Since $(u_1, b), (u_1, b') \in S$, $(u_2, b), (u_2, b') \in J^2[S]$. Continuing in this manner, we obtain $(u_{r-1}, b), (u_{r-1}, b') \in J^{r-2}[S], r \geq 2$. Consequently, $(u_r, v) = (u, v) \in J^{r-1}[S]$.

Let $n = \max\{l(u) : u \in V(G)\}$ and $(u, v) \in V(G[H])$. Then by the Claim, $(u, v) \in J^{n-1}[S] \subseteq J^n[S]$. Thus, $V(G[H]) = J^n[S]$. Accordingly, S is an m-hull set in $G[H]$. Thus, $mh(G[H]) = 2$.

6
References

