

ADDENDUM NO. 01

Series of 2021

This Addendum No. 01 is issued to modify or amend items in the Bidding Documents for the **Provision of ICT Equipment for the operation of CHED-IDEAS Lab**. This shall form an integral part of the Bid Documents.

Name of Project: **Provision of ICT Equipment for the operation of CHED-IDEAS Lab**
 Location: CSU Campus, Ampayon, Butuan City
 Brief Description: Provision of ICT Equipment for the operation of CHED-IDEAS Lab
 Approved Budget for the Contract : **Php. 7,800,000.00**
 Source of Funds: TRF 2021
 Contract Duration: 120 Calendar Days

Please be informed of the changes and the inclusion of design in the Bidding Documents, as follows:

CHANGES/ AMENDMENT					
SPECIFICATION					
FROM		TO			
Contract Duration: 45 Calendar Days		Contract Duration: 120 Calendar Days			
ITEM No.	DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL COST
1	DESKTOP COMPUTER Processor: Core: 6, Threads: 12, Max. Freq. 3.6 Ghz, Smart Cache 12 MBHDD: 1TB Video Card:GDDR5, 2GB, Direct x 12 Open GL 4.5 Support, DVI,HDMI 2.0,Display Port 1.4 Memory: 8GB RAMDDR Casing with power supply Generic 20" monitor AVR, keyboard, mouse Windows 10 Professional Warranty: 1 year with technical support	10	set	₱50,000.00	₱500,000.00
2.	LAPTOP COMPUTER Processor: Core: 4, Threads: 8, Max. Freq. 4.5 Ghz,Smart Cache 8MB HDD: 1TB SSD: 512 GB Memory: 8GB DDR Video Card: 6GB GDDR6 192 bit, Core Speed: 960-1200 Mghz With Power adapter, bag, 32GB thumb drive USB 3.0,	5	unit	₱60,000.00	₱300,000.00

Republic of the Philippines
CARAGA STATE UNIVERSITY

Ampayon, Butuan City 8600, Philippines

Competence **S**ervice **U**prightness

BIDS AND AWARDS COMMITTEE (BAC)

Phone: 09175030963
(+6385) 341-2296

URL: <http://www.carsu.edu.ph>

Email: csu.bacsecretariat@carsu.edu.ph

	Warranty: 1 year, with technical support				
3.	<p>HIGH PERFORMANCE COMPUTER FOR COMPUTATIONAL CHEMISTRY WITH COMPUTING DEVICES AND ACCESSORIES</p> <p>High Performance Computing (HPC) Server, Branded</p> <p>Processor : 2 x 3.3Ghz, 12C/24T, 10.4GT/s, 24.75M Cache, Turbo, HT(165W) DDR4-2933</p> <p>Memory : 4 x 32GB RDIMM 3200MT/s, Dual Rank DIMM slots : 24 DDR4 DIMM Slots, Supports RDIMM / LRDIMM</p> <p>Storage (Sys) : BOSS Controller Card + with 2 M.2 Sticks 480GB(RAID 1), FH</p> <p>Storage (Data) : 4 x 2.4TB, SAS Drive 10K RPM 12Gbps 512e 2.5" Hot-Plug</p> <p>Controller : PERC H750 Adapter, Low Profile</p> <p>Drive Bays : Up to 16 x 2.5" SAS/SATA (HDD/SSD) or 8 x 3.5" SAS/SATA HDD</p> <p>Network / LAN : 10GbE SFP+, rNDC</p> <p>Transceiver : 4 x SFP+ SR Optic 10GbE 850nm</p> <p>Transceiver Modules</p> <p>Patch Cord : 2 x Fiber Patch Cord, LC-LC, 2m</p> <p>Accelerator : 3 x Full-height, full-length (FHFL) 10.5", dual-slot, Base: 765 MHz, Memory clock 1215 MHz, Memory type HBM2, Memory size: 40GB, 5120 bits, Up to 1555 GB/s, 250W, DW, FullHeight GPU</p> <p>Power Supply : Dual, Hot-plug, Redundant Power Supply, 2000W</p> <p>Power Cord : 2 x Jumper Cord-C19/C20, 0.6M, 250V, 16A</p> <p>Form Factor : 2U Rack Mount</p> <p>Accessories : Ready Rails Sliding Rails with Cable</p> <p>Management Arm Management : iDRAC9, Enterprise</p> <p>Software : Open Manage Enterprise Advanced or better</p> <p>Support : Support and Onsite Service Initial-Emerging DBS, 36 Months</p> <p>OS : Proprietary Operating system, Single Academic</p> <p>OLP 16 Licenses No Level Core License with 5 License No Level Device CAL</p> <p>Eng'g Services : Installation of OS and setup of the server.</p> <p>Warranty: 3 years with technical support</p> <p>UPS, Online Double Conversion, Single Phase, 10kVA</p> <p>Equipment Specifications:</p> <p>Input</p> <p>Dual Input : Yes</p> <p>Rated Voltage : 220 / 230 / 240 1-Phase</p> <p>Rated Frequency : 50/60Hz ± 5%</p> <p>Voltage Tolerance : 230 ± 20%</p> <p>Power factor : > 0.98</p> <p>Current distortion : ≤ 5% Bypass</p> <p>Voltage Tolerance : 180 / 264 VAC</p> <p>Frequency tolerance : ± 5% (selectable by user)</p> <p>Bypass Overload : 110% continuous, 130% for 1 hr., 150% for 3sec.</p> <p>Output</p> <p>Nominal Power : 10 kVA</p> <p>Active Power : 10 kW</p> <p>Rated Voltage : 220 / 230 / 240 1-Phase</p> <p>(selectable)</p> <p>Rated Frequency : 50 or 60 Hz</p> <p>Waveform : Sinusoidal</p> <p>Output sockets : Terminal board + 2 IEC 320 C13 + 1 IEC 320 C19</p> <p>Batteries</p> <p>Type : VRLA AGM Maintenance-Free Lead</p> <p>Based Battery Config : 12V SMF VRLA</p>	1	Lot	₱7,000,000.00	₱7,000,000.00

<p>Batteries (Internal)</p> <p>Engineering Services Installation and configuration and commissioning of the UPS.Warranty: 3 year, with technical support</p> <p>C. PC, All-in-One, Branded (10 Units) Processor : 8 Cores/16MB/16Threads/2.5GHz to 4.9GHz/65W)Memory : 1 x 8GB DDR4 Non-ECC Memory Storage : 1TB, 2.5" SATA Drive 7200 RPM Graphics : Arch. Turing Shaders, Boost Clock 1665 MHz, MemorySpeed: 8 Gbps, GDDR5 4GB Power Supply : Platinum Power Supply Unit Wireless : Wi-Fi 6, Dual-band 2x2 802.11ax with MU-MIMO Bluetooth :Bluetooth 5.1 Accessories : Wireless Keyboard & Mouse, Black and Basic StandBuilt-in SW : AI Optimization (Optimizer); and Support Assist OS Recovery Tool Display : 23.8" FHD 1920x1080 IPS Non-Touch Anti-Glare, DiscreteGraphics IR Camera : Yes Warranty : 3-Years ProSupport and NBD Onsite Service OS : 64x Based operating System, Latest Version, built in anti virusUPS : 650VA / 360W, USB, 230V Eng'g Services : Installation and setup of AIO PCs.with technical support</p> <p>D. Academic Site Binary License for First Unix Machine Type Single Unix Machine Type License. All supported x86_64-based/Linux computer systems covers all four of the following G16 x86-64/Linux binaries versions: Legacy (pre-SSE4.2-enabled) x86_64-based Linux binaries SSE4.2-enabled x86_64-based Linux binaries AVX-enabled x86_64-based Linux binaries AVX2-enabled x86_64-based Linux binaries</p> <p>Fundamental Algorithms</p> <ul style="list-style-type: none"> Calculation of one- & two-electron integrals over any contracted gaussian functions Conventional, direct, semi-direct and in-core algorithms Linearized computational cost via automated fast multipole methods (FMM) and sparse matrix techniques Harris initial guess Initial guess generated from fragment guesses or fragment SCF solutions Density fitting and Coulomb engine for pure DFT calculations, including automated generation of fitting basis sets $\mathcal{O}(N)$ exact exchange for HF and hybrid DFT 1D, 2D, 3D periodic boundary conditions (PBC) energies & gradients (HF & DFT) Shared-memory (SMP), cluster/network and GPU-based parallel execution <p>Model Chemistries</p> <p>Molecular Mechanics</p> <ul style="list-style-type: none"> Amber, DREIDING and UFF energies, gradients, and 				
--	--	--	--	--

	<p>• frequencies</p> <ul style="list-style-type: none">• Custom force fields• Standalone MM program <p>Ground State Semi-Empirical</p> <ul style="list-style-type: none">• CNDO/2, INDO, MINDO3 and MNDO energies and gradients• AM1, PM3, PM3MM, PM6 and PDDG energies, gradients and reimplemented (analytic) frequencies• PM7: original and modified for continuous potential energy surfaces• Custom semi-empirical parameters (Gaussian and MOPAC External formats)• DFTB and DFTBA methods <p>Self Consistent Field (SCF)</p> <ul style="list-style-type: none">• SCF restricted and unrestricted energies, gradients and frequencies, and RO energies and gradients• EDIIS+CDIIS default algorithm; optional Quadratic Convergent SCF• SCF procedure enhancements for very large calculations• Complete Active Space SCF (CASSCF) energies, gradients & frequencies<ul style="list-style-type: none">• Active spaces of up to 16 orbitals• Restricted Active Space SCF (RASSCF) energies and gradients• Generalized Valence Bond-Perfect Pairing energies and gradients• Wavefunction stability analysis (HF & DFT) <p>Density Functional Theory</p> <p><i>Closed and open shell energies, gradients & frequencies, and RO energies & gradients are available for all DFT methods.</i></p> <ul style="list-style-type: none">• EXCHANGE FUNCTIONALS: Slater, X_α, Becke 88, Perdew- Wang 91, Barone-modified PW91, Gill 96, PBE, OPTX,TPSS, revised TPSS, BR_x, PKZB, ωPBEh/HSE, PBEh• CORRELATION FUNCTIONALS: VWN, VWN5, LYP, Perdew 81,Perdew 86, Perdew-Wang 91, PBE, B95, TPSS, revised TPSS, KCIS, BRC, PKZB, VP86, V5LYP• OTHER PURE FUNCTIONALS: VSXC, HCTH functional family, tHCTH, B97D, M06L, SOGGA11, M11L, MN12L, N12, MN15• HYBRID METHODS: B3LYP, B3P86, P3PW91, B1 and variations, B98, B97-1, B97-2, PBE1PBE, HSEh1PBE and variations, O3LYP, TPSH, tHCTHhyb, BMK, AFD, M05, M052X, M06, M06HF, M062X, M08HX, PW6B95, PW6B95D3, M11, SOGGA11X, N12, MN12SX, N12SX, MN15, HISSbPBE, X3LYP, BHandHLYP; user- configurable hybrid methods• DOUBLE HYBRID: B2PLYP & mPW2PLYP and variations with dispersion, DSDPBEP86, PBE0DH, PBEQIDH (see also below in "Electron Correlation")• EMPIRICAL DISPERSION: PFD, GD2, GD3, GD3BJ• FUNCTIONALS INCLUDING DISPERSION: APFD, B97D3, B2PLYPD3• LONG RANGE-CORRECTED: LC-ωPBE, CAM-B3LYP,				
--	---	--	--	--	--

<ul style="list-style-type: none">• ωB97XD and variations, Hirao's general LC correction• Larger numerical integrations grids	<p>Electron Correlation: <i>All methods/job types are available for both closed and open shell systems and may use frozen core orbitals; restricted open shell calculations are available for MP2, MP3, MP4 and CCSD/CCSD(T) energies.</i></p> <ul style="list-style-type: none">• MP2 energies, gradients, and frequencies• Double hybrid DFT energies, gradients and frequencies, with optional empirical dispersion (see list in "Density Functional Theory" above)• CASSCF calculations with MP2 correlation for any specified set of states• MP3 and MP4(SDQ) energies and gradients• MP4(SDTQ) and MP5 energies• Configuration Interaction (CISD) energies & gradients• Quadratic CI energies & gradients; QCISD(TQ) energies• Coupled Cluster methods: restartable CCD, CCSD energies & gradients, CCSD(T) energies; optionally input amplitudes computed with smaller basis set<ul style="list-style-type: none">• Optimized memory algorithm to avoid I/O during CCSD iterations• Brueckner Doubles (BD) energies and gradients, BD(T) energies; optionally input amplitudes & orbitals computed with a smaller basis set• Enhanced Outer Valence Green's Function (OVGF) methods for ionization potentials & electron affinities• Complete Basis Set (CBS) MP2 Extrapolation• Douglas-Kroll-Hess scalar relativistic Hamiltonians				
--	--	--	--	--	--

	<p>Redundant internal coordinate algorithm designed for large system, semi-empirical optimizations</p> <ul style="list-style-type: none">Newton-Raphson and Synchronous Transit-Guided Quasi-Newton (QST2/3) methods for locating transition structuresIRCMax transition structure searchesRelaxed and unrelaxed potential energy surface scansImplementation of intrinsic reaction path following (IRC), applicable to ONIOM QM:MM with thousands of atomsReaction path optimizationBOMD molecular dynamics (all analytic gradient methods); ADMP molecular dynamics: HF, DFT, ONIOM(MO:MM)Optimization of conical intersections via state-averaged CASSCFGeneralized internal coordinates for complex optimization constraints <p>Vibrational Frequency Analysis</p> <ul style="list-style-type: none">Vibrational frequencies and normal modes (harmonic and anharmonic), including display/output limiting to specified atoms/residues/modes (optional mode sorting)Restartable analytic HF and DFT frequenciesMO:MM ONIOM frequencies including electronic embeddingAnalytic Infrared and static and dynamic Raman intensities (HF & DFT; MP2 for IR)Pre-resonance Raman spectra (HF and DFT)Projected frequencies perpendicular to a reaction pathNMR shielding tensors & GIAO magnetic susceptibilities (HF, DFT, MP2) and enhanced spin-spin coupling (HF, DFT)Vibrational circular dichroism (VCD) rotational strengths (HF and DFT; harmonic and anharmonic)Dynamic Raman Optical Activity (ROA) intensities (harmonic and anharmonic)Raman and ROA intensities calculated separately from force constants in order to use a larger basissetHarmonic vibration-rotation couplingEnhanced anharmonic vibrational analysis, including IR intensities, DCPT2 & HDCPT2 method for resonance-free computations of anharmonic frequenciesAnharmonic vibration-rotation coupling via perturbation theoryHindered rotor analysis <p>Molecular Properties</p> <ul style="list-style-type: none">Population analysis, including per-orbital analysis for specified orbitals: Mulliken, Hirshfeld, CM5Computed atomic charges can be saved for use in a later MM calculationElectrostatic potential, electron density, density gradient, Laplacian, and magnetic shielding & induced current densities over an automatically generated gridMultipole moments through hexadecapoleBioorthogonalization of MOs (producing corresponding orbitals)Electrostatic potential-derived charges (Merz-Singh-Kollman, CHelp, CHelpG, Hu-Lu-Yang)			
--	---	--	--	--

<ul style="list-style-type: none">• Natural orbital analysis and natural transition orbitals• Natural Bond Orbital (NBO) analysis, including orbitals for CAS jobs. Integrated support for NBO3; external interface to NBO6• Static and frequency-dependent analytic polarizabilities and hyperpolarizabilities (HF and DFT); numeric 2nd hyperpolarizabilities (HF; DFT w/ analytic 3rd derivs.)• Approx. CAS spin orbit coupling between states• Enhanced optical rotations and optical rotary dispersion (ORD)• Hyperfine spectra components: electronic g tensors, Fermi contact terms, anisotropic Fermi contact terms, rotational constants, dipole hyperfine terms, quartic centrifugal distortion, electronic spin rotation tensors, nuclear electric quadrupole constants, nuclear spin rotation tensors• ONIOM integration of electric and magnetic properties <p>ONIOM Calculations</p> <ul style="list-style-type: none">• Enhanced 2 and 3 layer ONIOM energies, gradients and frequencies using any available method for any layer. Optional electronic embedding for MO:MM energies, gradients and frequencies implemented so as to include all effects of the MM environment without neglecting terms in its coupling with the QM region• Enhanced MO:MM ONIOM optimizations to minima and transition structures via microiterations including electronic embedding• Support for IRC calculations• ONIOM integration of electric and magnetic properties <p>Excited States</p> <ul style="list-style-type: none">• ZINDO energies• CI-Singles energies, gradients, & freqs.• Restartable time-dependent (TD) HF & DFT energies, gradients and frequencies. TD-DFT can use the Tamm-Dancoff approximation.• SAC-CI energies and gradients• EOM-CCSD energies and gradients (restartable); optionally input amplitudes computed with a smaller basis set• Franck-Condon, Herzberg-Teller and FCHT analyses• Vibronic spectra including electronic circular dichroism (ECD) rotational strengths (HF and DFT)• Resonance Raman spectra• Ciofini's excited state charge transfer diagnostic (Dct)• Caricato's EOMCC solvation interaction models• CI-Singles and TD-DFT in solution• State-specific excitations and de-excitations in solution• An energy range for excitations can be specified for CIS and TD excitation energies <p>Self-Consistent Reaction Field Solvation Models</p> <ul style="list-style-type: none">• New implementation of the Polarized Continuum Model (PCM) facility for energies, gradients and frequencies• Solvent effects on vibrational spectra, NMR, and other properties				
---	--	--	--	--

	<ul style="list-style-type: none">• Solvent effects for ADMP trajectory calcs.• Solvent effects for ONIOM calculations• Enhanced solvent effects for excited states• SMD model for ΔG of solvation <p>Other SCRF solvent models (HF & DFT): Onsager energies, gradients and freqs., Isodensity Surface PCM (I-PCM) energies and Self-Consistent Isodensity Surface PCM (SCI-PCM) energies and gradients</p> <p>Ease-of-Use Features</p> <ul style="list-style-type: none">• Automated counterpoise calculations• Automated optimization followed by frequency or singlepoint energy• Ability to easily add, remove, freeze, differentiate redundant internal coords.• Simplified isotope substitution and temperature/pressure specification in the route section• Optimizations<ul style="list-style-type: none">• Retrieve the <i>n</i>th geometry from a checkpointfile• Recompute the force constants every <i>n</i>th step of a geometry optimization• Reduce the maximum number of allowed steps, including across restarts• 180° flips detected and suppressed for better visualization• Freezing by fragment for ONIOM optimizations• Simplified fragment definitions on molecule specifications• Many more restartable job types• Atom freezing in optimizations by type, fragment, ONIOM layer and/or residue• QST2/QST3 automated transition structure optimizations• Saving and reading normal modes• %OldChk Link 0 command specifies read-only checkpoint file for data retrieval• Default.Route file for setting calculation defaults• Enhanced set of equivalent Default .Route directives, Link 0 commands, command line options and environment variables <p>Integration with External Programs</p> <ul style="list-style-type: none">• NBO 6• COSMO/RS• AIMPAC WfnX files• Antechamber• ACID• Pickett's program• DFTB input file <p>General external interface script-based automation, results post-processing, interchanging data/calculation results with other programs, and so on:</p> <ul style="list-style-type: none">• Interface routines in Fortran, Python and Perl(open source)• Keyword and Link 0 command support																																																			
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

	<p>With installation and technical support</p> <p>E. SOLID STATE SOFTWARE</p> <p>30 Lab pack license Should be a perpetual license Should be a flexible configuration license (can be networkfloating licenses or stand-alone licenses). With Technical Support & Elite Maintenance Program (EMP),12-Months</p> <ul style="list-style-type: none">• Feature• Predict, explore, and design novel molecules in a powerful, easy-to-use environment.• Combines modern quantum chemistry software techniques with the mathematical power and usability to provide a comprehensive, easy-to-use environment for the parallel computation of the electronic energiesand properties of molecules.• Define molecules instantly from a database of more than 96 millionmolecules• Run quantum computations with well-known electronic structure methods as well as recently developed advanced methods, enablingcutting-edge research• Analyze molecular energies and properties through publication-quality, 2-D and 3-D plots and animations. <p>With installation and technical support</p>				
	<p>Additional Requirement:</p> <ul style="list-style-type: none">- Certificate of Availability of Technical Personnel for repair and maintenance purposes- Document/s reflecting the name of the technical personnel who will conduct the repair & maintenance upon the request of the University attaching further contract/agreement as proof.				

For guidance and information of all concerned.

ARMIE LEILA M. MORDENO, DPA, CSEE
BAC Chairperson

Received by the Bidder:

